
Software for Xemo - Controllers

Xemo DLL
User Manual

Functions library (DLL) for programming Xemo controllers with MotionBasic functionality
under Windows - Introduction, Language reference, Examples -

Industrial Systems GmbH

 Xemo DLL

- 2 - 591.11-10.7

 Systec Industrial Systems GmbH
Nottulner Landweg 90
48161 Muenster - Germany

Telephone +49-(0)2534-8001-70
 +49-(0)700-SYSTEC-DE
Telefax +49-(0)2534-8001-77
Email info@systec.de
Internet www.systec.de

Doc. no. 591.11-10.7
Version: 10 2019
Translation of the original manual

 Copyright and all other rights to this document remain with Systec
GmbH. Systec does not take any responsibility for the correctness
and/or completeness of the contents. We reserve the right to make
technical changes.

You can download this document from the Systec website free of
charge. For this document, Systec GmbH grants you the simple charge-
free right, unlimited in space and time, for all known and not yet
known types of use. All rights with respect to patent grants or industrial
design registration and further rights remain unaffected.

You may duplicate this document. Distribution is only allowed with the
clear indication of the copyright held by Systec GmbH. You may not
process, modify or change this document in any other way. In order to
distribute this document for commercial reasons and to make it availa-
ble, you will require prior written authorization from Systec GmbH.

mailto:info@systec.de
http://www.systec.de/

 User Manual

591.11-10.7 - 3 -

Table of contents
1 Introduction ... 5

1.1 Installation .. 5
1.2 Important symbols in this manual ... 6

2 Syntax .. 8
2.1 A few notes on nomenclature ... 8
2.2 MotionBasic commands .. 8
2.3 Parameters .. 8
2.4 Local functions .. 9

3 Scope of functionality .. 10
3.1 A look at the Xemo commands ... 10
3.2 Time functions .. 11
3.3 Transfer of strings .. 11
3.4 Parameter values for the trajectory commands 11
3.4.1 Bit mask of the relevant coordinates ... 11
3.4.2 Array of the target coordinates .. 12
3.5 FIFO and state query .. 12
3.5.1 The online FIFO .. 12
3.5.2 The state query ... 13
3.6 Multithread applications ... 14
3.7 Error correction ... 15
3.7.1 Standard error correction .. 15
3.7.2 Application-specific error correction ... 17
3.8 Serial communication ... 18
3.8.1 Initializing ... 18
3.8.2 Check sum .. 19
3.8.3 Elementary communication functions ... 19
3.9 Subroutines ... 19

4 The DLL reference ... 21
4.1 Overview of all functions .. 21
4.2 DLL internal functions ... 24
4.3 The Xemo DLL functions .. 40

5 Application examples .. 58
5.1 Visual Basic sample application ... 58
5.1.1 Description ... 58
5.1.2 Project modules .. 58
5.1.3 Program start ... 58
5.1.4 Initializing ... 59
5.1.5 Ending the application .. 60
5.1.6 Running the axes .. 60
5.1.7 Displaying the positions .. 61
5.1.8 Aborting in case of error ... 61
5.2 Application example in ANSI –C ... 62

 Xemo DLL

- 4 - 591.11-10.7

5.2.1 Description ... 62
5.2.2 Source code listings .. 63

6 Bibliography .. 68
7 Index .. 69

 User Manual

591.11-10.7 - 5 -

1 Introduction

 In addition to the development environment IDE for offline program-
ming, MotionBasic also features a Win32-DLL and a Win64-DLL for the
PC programmer who wishes to program his/her own application-spe-
cific user interface in connection with a Systec Xemo controller. For this
reason the DLL is called Xemo-DLL. A DLL (Dynamic Link Library) is a
construction of the Microsoft company to encapsulate functionalities in
its operating system Windows and in that way make them available for
other programs.

The Xemo-DLL provides all commands from the controller as library
functions (procedures) for the target languages C/C++, PASCAL,
BASIC. The controller can thus be connected to a PC user interface as
an intelligent front-end.
The DLL performs the initialization of the serial interface (RS 232 or
USB), converts the commands into the correct transmission format, and
transmits the data to the controller. Error recovery and diagnostic routi-
nes remain active.

1.1 Installation

Xemo-DLL The Xemo-DLL is a non-administered Windows DLL and is compatible
with the following operating systems:
 Windows 95 / 98
 Windows NT 4.0, 2000, XP
 Windows 7 (32 and 64 bit)
 Windows 8 (32- und 64-Bit)

Declaration files In addition to the actual Xemo DLL, declaration files for various devel-

opment environments are included. The following development envi-
ronments are supported:

 Microsoft Visual C++
 Microsoft Visual Basic (VBA, Version 6)
 Microsoft Visual Basic – NET
 Microsoft C# - NET
 Borland C++ Builder

Delivery contents The following files are contained in the Xemo DLL:

 XemoDLL.dll the 32 bit Windows DLL
 Xemo64.dll the 64 bit Windows DLL

 Definition files for Microsoft Visual C++ / Borland C++ Builder

 Xemodll.h Functions prototypes

 Xemo DLL

- 6 - 591.11-10.7

 mbconst.h MotionBasic constants
 XemoDLL.lib Functions library (Microsoft Visual C++), 32 bit
 Xemo64.lib Functions library (Microsoft Visual C++), 64 bit

The function library for Borland C++ Builder can be generated through
the Xemo DLL.dll with the Borland Tool IMPLIB.

Remark

Please retain the naming of the files for the 64-bit programming,
Xemo64.dll, and Xemo64.lib for a smooth process.

 Definition files for Microsoft Visual Basic

 Xemodll.bas Function declaration for Microsoft Visual Basic
 mbconst.bas MotionBasic constants

 .NET
 Xemodll.vb Function declaration for Microsoft Visual Basic
 mbconst.vb MotionBasic constants (rename mbconst.bas)

Installation The file XemoDLL.dll or Xemo64.dll must be copied either to the work-

ing directory of your application or to the Windows system directory.
(The file will be sought first in the current directory.)

If you’re programming with C++, the header file Xemo DLL.h, and
possibly the file mbconst.h, must be included in the source code files,
and the library file Xemo DLL.lib or Xemo64.lib copied into the project.

If you’re programming with Visual Basic, the file Xemo DLL.bas, and
possibly the file MbConst.bas, must be added to the project.

When using VB:NET, you must rename MbConst.bas into MbConst.vb
and, together with XemoDll.vb, add it to your project.

Remark

Xemos with Firmware 847 (all current models) use a new USB-ID be-
ginning with version 5.00. For these you need Xemo-DLL version 2.50
or higher.

1.2 Important symbols in this manual

Remark

Please read passages, which are marked with this symbol, definitely.
Get important information about dealing with these instructions and
conditions or limits for the use of the Xemo DLL.

 User Manual

591.11-10.7 - 7 -

 Tip

Learn addition facts and practical tips in sections, which are marked
with this symbol.

[SYSTECxxx]
The literature abbreviation [SYSTECxxx] refers you to other manuals by
Systec. See the bibliography in Chap. 6.

 Xemo DLL

- 8 - 591.11-10.7

2 Syntax

2.1 A few notes on nomenclature

Comment With regard to programming languages, program libraries, and control-
lers, terms such as Functions, Procedures, Macros, Subroutines as well
as Commands, Instructions and Statements appear over and over again.
The terms Function, Procedure, Macro and Subroutine generally refer
to parts of a program within a program which perform certain tasks.
When such a task (subroutine) is activated, the terms Statement, In-
struction or Command are used.

Basic In the programming language Basic, as in MotionBasic, one distin-
guishes between subprocedures and function procedures. A ‘subproce-
dure’ is a part of a program which executes a certain task, often on the
basis of a certain set of parameters. A ‘function procedure’ defines a
part of a program which calculates a value and returns the value as a
function. Further information on this subject can be found in the Mo-
tionBasic manual [SYSTEC717].

Pascal Some Basic dialects use the term “procedure” as a general designation
for both variants (sub and function). In contrast, the programming lan-
guages Pascal and Visual Basic use the term “procedure” only to desig-
nate the variant without a return value.

C/C++ In the programming language CC++, only the term “functions” is used,
regardless of whether or not a value is returned.

The DLL As regards the DLL, in this manual only the term “function” is used.
Statements understood by the controller are referred to as ‘Commands’.

2.2 MotionBasic commands

 Functions of the DLL which correspond to MotionBasic commands of
the Systec controller begin with the prefix “MB_”, followed by the
name of the function as described in the MotionBasic manual. The
prefix and the first letter of the MotionBasic command are always writ-
ten in upper-case. Within MotionBasic itself, commands are not case-
sensitive (i.e. one does not distinguish between upper- and lower-case
letters). In the case of most Windows programming languages, how-
ever, syntax is case-sensitive. In case of doubt, the correct notation can
be taken from the corresponding declaration file.

Example MB_Amove (0,1000)

2.3 Parameters

 Within MotionBasic there are commands with a variable number of pa-
rameters, commands with so-called “named” parameters, as well as im-
plicit commands which have different effects depending on notation.

 User Manual

591.11-10.7 - 9 -

 In contrast, the Xemo DLL allows only explicit functions with unnamed
parameters and a constant number of parameters.

 So, for instance, in the MotionBasic programming manual [SYSTEC717],

the implicit statements SET /GET – used for writing and reading system
parameters – are described. In MotionBasic, depending on notation,
the system parameters, the axis parameters or the I/O parameters (I/O=
input or output) are accessed. The Xemo DLL, however, allows only ex-
plicit statements. Consequently, the DLL has additional functions for
programming axis parameters. These functions do not appear in the Mo-
tionBasic language definition.

Examples MB_SET (_FIFOMarker, _

1000)
'Program system parameter

 MB_ASET (0, _Speed, 2000) 'Program axis parameter

2.4 Local functions

 All functions which perform a task within the DLL (e.g. the initialization
of the serial interface) are marked for easy recognition with the prefix
'ML_'.

Example ML_IniCom (1, 19200)

 Xemo DLL

- 10 - 591.11-10.7

3 Scope of functionality

 You can find all functions and procedures provided by the DLL clearly
arranged in the reference section of this document. They are also pro-
vided in the corresponding declaration file (“*.h” for Visual C++,
“*.bas” for Visual Basic).

3.1 A look at the Xemo commands

 The extensive MotionBasic programming manual [SYSTEC717] provides
all commands for motor motion, setting and reading inputs and outputs,
programming and reading system parameters, as well as the terminal
functions from the DLL.

 On the other hand, control instructions (If..Then, While.., etc.), arith-
metic functions (Sin, Cos, Abs, etc.), and the use of variables are not
supported.

 A short overview of all commands is presented in the following table.

Specific information regarding the functioning of these commands is
found is the reference section of the MotionBasic manual.

 Controller commands
System parameters Get, Aget, IoGet, Set,

Aset, IoSet
Set and read

Inputs and outputs In, Out, Rout, Sout,
Waitinp,
Inw, Outw, Routw

Set and read

CAN-Bus SdoRcv, SdoTrm Control external devices via CAN-
Bus

Control of individual
axes

Jog
Amove, Rmove
Home
Stop
Still
Busy

Velocity mode
Positioning
Reference run
Stop axis
Await standstill
Query state of an axis

Path control Lin, Lin0, Lin1
Circle, Arc, Arcc, Arcw

Linear interpolation
Circular interpolation

Time functions Delay, Still Delay time
Terminal Print, Printxy, Cpos, Ctype

Textattrib, Cls, Cleol
Keystate, Keypressed
Keyread, Keyclear
Keyled

Print out text

Keyboard entry

Subroutines Call Call up subroutine
System control GetState

ResErr
SysCtrl
SetFIFO

State query
Delete error
Interrupt, quit, reset, restart
Manipulate online FIFO

 User Manual

591.11-10.7 - 11 -

3.2 Time functions

 When using the MotionBasic time functions Delay, Still and Waitinp,
please note that these do not cause any delay within the DLL. These are
simply normal FIFO commands and are immediately transferred to the
Xemo controller, if there is space in the FIFO. Only if the FIFO should
be full are they delayed there until there is space for a new command
in the FIFO.

Delay time Instead, the delay time (Delay) and/or waiting for an event (Still,
Waitinp) takes place in the controller’s interpreter. Not until the delay
time has lapsed will the next commando be loaded from the FIFO and
executed.

3.3 Transfer of strings

 Some functions of the DLL return a text string. As a rule, the DLL pro-
vides two variants for this. The first variant delivers a pointer to the text
string in the return value, the other variant expects an argument as a
reference to a target string and copies the return string in that target.
The first variant cannot be used in Visual Basic applications. Although
Visual Basic supports function procedures, this procedure cannot be re-
flected in a DLL function. For that reason, the second function is in-
tended for Visual Basic applications with which a prepared string varia-
ble is completed.

Visual Basic
Example
GetDllVersion

 Public Function Xemo_DllVersion() As String
 Dim Version As String * 20
 ML_GetDllVersion (Version , 20)
 Xemo_DllVersion = _
 Left(Version, InStr(Version, Chr$(0)) - 1)
End Function

 In this example, a Visual Basic function procedure is implemented

which delivers the version of the Xemo DLL in the form of a string in
the return value. Within the function a string with a certain length is
prepared, which is then completed by the DLL function. Subsequent to
that, the null sign which the DLL function has added as the string-end
sign must be eliminated and the string modified to the proper length.

3.4 Parameter values for the trajectory commands

3.4.1 Bit mask of the relevant coordinates

 In the case of some trajectory commands, i.e. MB_Arc and MB_Lin, you
transfer the relevant coordinates, this means the names of the axes,
which are assigned to the coordinate system and controlled via trajec-
tory commands, by means of a bit mask.

 Xemo DLL

- 12 - 591.11-10.7

Example To assigne the axes 3 to 5 to the coordinate system and to control them
via trajectory commands, you transfer the value 56 to the Xemo con-
troller.
You get the value via the bit mask as follows:

 3,4,5 = 111000 = 56.

3.4.2 Array of the target coordinates

 To set the array of the target coordinates for the example above you
can use a three-dimensional array.

 The order of the coordinates corresponds to the order of the bit mask.

3.5 FIFO and state query

3.5.1 The online FIFO

FIFO

The controller is outfitted with a FIFO (First-In-First-Out memory) for
online commands. After reception, most commands are routed via the
serial interface to this online FIFO. The commands are then read
within the controller and then run in the order in which they were re-
ceived. The execution of a command proceeds independently of inter-
nally active programs in a separate task. Online commands can thus be
executed simultaneously with programs, or tasks, running internally.
With the help of the FIFO, long sequences of commands can be trans-
mitted to the controller in a short time. The control computer does not
have to wait for the execution of each individual command. Com-
mands are executed in the controller without any “pause for thought”
as long as there are commands in the FIFO. That saves unnecessary
delays.

State byte The current state of the FIFO can be queried in the state byte with the

MB_GetState function. (See also GetState command in the reference
section of the MotionBasic programming manual [SYSTEC717]). As long
as the FIFO state does not show a full FIFO, a complete command can
always be transmitted. If, despite a full FIFO, a FIFO command is sent
to the controller, the command is ignored, and an error message is gen-
erated by the controller.

 FIFO controller commands
System parameters Set, Aset, IoSet Assign
Inputs and outputs Out, Rout, Sout,

Inw, Outw, Routw
Set and read

Control of individual
axes

Jog
Amove, Rmove
Home

Velocity mode
Position
Reference run

 Still Await standstill
Trajectory control Lin, Lin0, Lin1

Circle, Arc, Arcc, Arcw
Linear interpolation
Circular interpolation

 User Manual

591.11-10.7 - 13 -

Time functions Delay, Still, Waitinp Delay time

Direct commands There are also many commands which are not directed via the online

FIFO but instead are executed directly. Among those are commands
which directly influence the FIFO itself, as well as the read-out of sys-
tem parameters. In the reference section of this documentation you will
find notes which tell you if a command is a FIFO or a direct (non-FIFO)
command.
The following table contains a summary of all direct controller com-
mands.

 Direct controller commands
System control GetState

ResErr
SysCtrl
SetFIFO

State query
Delete error
Interrupt, quit, reset, restart
Manipulate online FIFO

Subroutine Call Call up subroutine
System parameters Get, Aget, IoGet Read system parameters
Inputs and outputs In, Inw, Rout, Routw Read inputs and outputs
Control of individual
axes

Busy
Stop

Query state of an axis
Stop

Terminal Print, Printxy, Cpos, Ctype
Textattrib, Cls,
Cleol,Keyled

Print out

 Keystate, Keypressed
Keyread, Keyclear

Keyboard entry

CAN-bus SdoRcv, SdoTrm Control device via CAN-bus

3.5.2 The state query

 The MB_GetState, used to query system state, is of particular im-
portance for communication with the controller via the serial interface.
This command returns the state of the Online FIFO, the error state and
the state of the axes.

 Detailed descriptions of the GetState command and the system param-
eters _State are found in the reference section of the MotionBasic pro-
gramming manual [SYSTEC717].

Delay time Before FIFO commands are transmitted, the DLL automatically queries

the state of the controller with the MB_GetState command. If the FIFO
is full, the transmission is delayed until there is free space in the FIFO.
Simultaneously, the error bit is checked and an error recovery is carried
out. (See error recovery.)

 When the FIFO is full, depending on which command is presently be-
ing executed by the controller, there may be a substantial delay before
a subsequent command can be transmitted. Although the Xemo DLL is
capable of multithreading, this could lead to a blockage of user inputs

 Xemo DLL

- 14 - 591.11-10.7

in the Windows application, or hinder the cyclical display of, for in-
stance, axis positions. MotionBasic and the Xemo DLL provide a num-
ber of solutions to this problem:

1. FIFO state The application can check the state of the FIFO preceding the transmis-

sion of every command. For this purpose, the following DLL function is
provided:

 ML_FIFOFull Queries FIFO state and returns TRUE as long as the FIFO
is full.

2. FIFO memory If a series of commands is to be transmitted, the application can check

the amount of remaining memory in the FIFO with the system parame-
ter _FIFOLeft. This allows you to determine how many commands can
be transmitted without a further state query.

 MB_Get(_FIFOLeft) Returns the amount of free memory in the FIFO

3. FIFO-Marker The system state command (MB_GetState) also checks whether or not

the FIFO has exceeded a defined limit. , or pointer. This limit is pro-
grammed with the system parameter FIFOPointer

4. Multithreading The Xemo DLL is capable of multithreading (see the Multithread appli-

cations chapter in this documentation). As long as a DLL function is
waiting for the FIFO, other threads are permitted which can interrupt
the presently waiting DLL function, however not with a further FIFO
function, as this must likewise wait for the FIFO to free up.

 You could, for example, set up two threads; a thread which transfers
the continuous positioning data to the controller’s FIFO, and another
thread which displays the actual positions of the axes in cyclical inter-
vals.

5. Call-back It is also possible to provide the DLL with a pointer to a function which

is then called up (Call-back) whenever the FIFO is full during the execu-
tion of a FIFO command and there is therefore time for other tasks.
This application-specific call-back function makes it possible, for in-
stance, to update the display of the axis positions, or to react to a can-
cellation performed by the user. However, this possibility only func-
tions in programming languages which support function pointers.

Example ML_FIFOIdle (MyIdleFunction)

3.6 Multithread applications

 The Xemo DLL is capable of multithreading. The functions of the Xemo
DLL can be simultaneously called up by a number of threads without
any further measures being necessary. The Xemo DLL takes care of the

 User Manual

591.11-10.7 - 15 -

correct sequencing of data, so that the transfer of data to the Xemo con-
troller always occurs in the proper sequence. If, for example, a DLL
function is transferring data from another thread and is interrupted by
the call-up of an additional DLL function, this new function will be held
in line until the initial transfer of data has been completed.

 You can, for example, initiate two threads; one which transfers the con-
tinuous positioning date to the controller’s FIFO, and a second one
which displays the actual positions of the axes in cyclical intervals.

Multicontroller In cases when a number of Xemo controllers are addressed via multiple
interfaces, the correct sequence of data is guaranteed in a multithread
application (see ML_ComSelect).

Remark

Correct sequencing is only possible in conjunction with MotionBasic
functions, as only these identify the start and conclusion of a complete
data transfer. In special cases, if elementary communication functions
(e.g. ML_Putchar) are used for direct data transfer, the correct data se-
quence in a multithread application must be guaranteed, if necessary
by use of a locking mechanism.

3.7 Error correction

 When using the Xemo DLL, you need to distinguish between two differ-
ent error sources: errors which occur within the DLL, and errors which
occur in the controller.

Error sources Errors within the DLL arise because of problems with the serial commu-

nication and through timeouts. Errors which occur in the controller are
recognized by the DLL only when the system state (GetState) is queried.
The system state is automatically queried every time a FIFO command
is transferred.

 An exact description of the controller’s error codes can be found in the
chapter “Error correction” in the MotionBasic programming manual
[SYSTEC717].

3.7.1 Standard error correction

 To facilitate especially simple operation of the Xemo DLL, this contains
a standard routine for error correction. This standard error correction is
pre-configured and does not need to be explicitly initialized. An appli-
cation which integrates Xemo DLL needs do nothing more than to
query the error state at certain intervals with ML_GetErrState. If this has
assumed a value of “-1” (ERR_CANCEL), an error has occurred and op-
eration should be interrupted.

 In case of an error, an error code is entered into the ErrCode as a static
variable and the error state is set at ERR_COM_PENDING or
ERR_XEMO_PENDING. After that, the error correction routine is called
up which displays the error code and the corresponding error text in a
modal notification window.

 Xemo DLL

- 16 - 591.11-10.7

Communication er-
ror

In case of a communication error, for example, the following notifica-
tion window opens.

 If the user clicks on the button “Cancel”, the error state is set to

(ERR_CANCEL) to show that the user wishes to break off. As a result, all
further commands sent to the Xemo controller by the Xemo DLL are ig-
nored and will not be executed.

 In contrast, if the button Repeat is clicked, the error state will merely be
erased. The original error code can, however, still be queried with
ML_GetErrCode

Xemo runtime error In case of a runtime error within the Xemo controller, the error code

will be displayed in the following modal notification window.

 Just as in the case of a communication error (see above), clicking the

button “Cancel” will cause the Xemo DLL to ignore all further com-
mands to the Xemo controller and they will not be executed. Further,
the error state will be set at (ERR_CANCEL) to show that the user
wishes to break off.

 In contrast, clicking on the Yes button will delete the error in the Xemo
controller. The command MB_ResErr will then be sent to the Xemo
controller. The error description will now contain the error code
(ERR_XEMO).

 If the button No is clicked on, the error in the Xemo controller will not
be deleted. Again, the error description will then contain the error code
(ERR_XEMO) as well.

Error query The error code and state of the Xemo DLL can be queried with the fol-
lowing DLL functions:

Example ML_GetErrCode() 'Error code query

 ML_GetErrState() 'Error state query

 Errors which occur within the Xemo controller might have to be queried

specially.

 User Manual

591.11-10.7 - 17 -

 ML_LastRunErr() Query of the Xemo contro-

ller’s last runtime error as
recorded by the standard
error routine.

 MB_Get (_ErrNo) Query of the runtime error
code in the Xemo controller

Error clearing The error state can be cleared with

Example ML_SetErrState (NO_ERR) 'DLL error state clearing

 In addition, the error state is cleared every time the initialization rou-

tines ML_IniCom or ML_IniUsb are called up.

 MB_ResErr Clear error state within the

Xemo controller

Remark

As long as errors in the controller have not been cleared with the com-
mand MB_ResErr, no further commands from the Online FIFO will be
executed. Therefore, it usually makes sense to delete all commands in
the FIFO with SetFIFO(_FfClear) before clearing the errors.

Error codes The individual error codes are described more clearly in the reference

section of this manual under ML_GetErrCode. Error state is described
more clearly under ML_GetErrState.

Error texts The error notifications of the standard error correction routine are pro-

vided in German and English. If German is set in the system parameters
of the operating system, German will be used. In all other cases, it will
be English.

3.7.2 Application-specific error correction

 Should the standard error correction contained in the Xemo DLL not be ad-
equate for your specific application, there is always the possibility of imple-
menting customized application-specific error correction.

Call-back Just as when dealing with FIFO commands, an elegant method for correct-

ing errors is use of the call-back procedure. Write a customized central rou-
tine for error correction and evaluation and enter a pointer for this routine
in the Xemo DLL: The function pointer for such an error correction routine
is transferred to the DLL with the function ML_ErrorCallBack

Example ML_ErrorCallBack (MyErrorHandle)

 If an error occurs within the DLL, a customized error correction routine

will be called up instead of the standard one. The appropriate error

 Xemo DLL

- 18 - 591.11-10.7

code is provided as a parameter. After error correction, it is advisable –
depending on the programming language used – to restart in the form
of an “Exception Handling” at the appropriate location or to exit the er-
ror routine with the corresponding return value. Appropriate values for
such a return value are

 NO_ERR Delete the error
 ERR_CANCEL Do not delete the error.

Communication with the
controller will be interrupted.

 The call-back procedure has the great advantage that it is not necessary

to query the error state whenever a DLL function is called up.
Error polling Every automatic error correction can be prevented by entering the

value (NULL) into the parameter “ErrorHandle”.

Example ML_ErrorCallBack(0) 'No error correction

 In this case, it is advisable to have the application software query the er-

ror state after every command sent to the Xemo controller

 Tip

In Chapter 5, Application examples, you will find individual examples
for C and Visual Basic which also include error correction.

3.8 Serial communication

 The DLL performs the initialization of the communication interface
(COM1, COM2 ... or USB), the conversion of the commands into the
correct transfer format, and the transmission of data to the controller.

Transfer format MotionBasic commands are transferred in an efficient binary format via

the serial interface RS-232 to the controller. They consist of a com-
mand byte and a variable number of data bytes. For ordinary commu-
nication, no additional data protection (CRC, check sum (CRC, check-
sum, etc.) takes place. Further protection by means of a check sum is,
however, configurable.

3.8.1 Initializing

 Prior to calling up a MotionBasic command, the serial interface must be
initialized once with ML_IniCom or ML_IniUsb. This initialization
should only be carried out once. With ML_IniCom or ML_IniUsb, the
error state is also cleared.
If the serial interface is to be re-programmed, e.g. to another baud rate,
you must first run the ML_DeiniCom routine. Moreover, before quit-
ting the program, the interface must be closed via the ML_DeiniCom
routine so that it is available for other applications.

 User Manual

591.11-10.7 - 19 -

Example ML_IniCom (1, 19200) 'Initialize serial inter-

'face and delete errors
 ML_DeiniCom 'Close serial interface

Multicontroller If more than one Xemo controller is connected to a PC, these can be

addressed by opening a number of communications interfaces. After-
ward, you can use ML_ComSelect to select the interface which is to be
used for communications after that point in time.

3.8.2 Check sum

 Transfer of data via the serial interface normally takes place without any
additional check-sum protocol. If you desire a higher level of security
for such transfers, an additional check-sum protocol can be activated.
This additional check-sum protocol reduces the speed of transfer by
about 10 – 20%

Example ML_CsumMode (1) 'Activate check-sum

'protocol

3.8.3 Elementary communication functions

 The MotionBasic DLL also contains basic functions for serial communi-
cation. These functions serve to send and receive MotionBasic com-
mands and their parameters. The functions are also used by the DLL it-
self. In addition, they can also be used by the user.

 The following table shows the basic functions for the serial interface.

 Serial communications functions
Send functions ML_PutChar

ML_PutWord
ML_PutLong

Send 1 byte
Send one word (16 bits)
Send one long-word (32
bits)

Receive functions ML_GetRcvState
ML_GetChar
ML_GetWord

Receive state
Receive one byte
Receive 1 word (16 bits)

 ML_GetLong Receive 1 long-word (32
bits)

3.9 Subroutines

 Subroutines (sub procedures) which have been created with the Mo-
tionBasic IDE and stored in the controller can also be called up online
with the help of the DLL.
In the MotionBasic environment, procedures and functions are called
up by their names. Procedures which have been declared with an addi-
tional program number can also be called up online by their numbers.
Any parameters can be transferred via the global parameter register.

 Xemo DLL

- 20 - 591.11-10.7

Example Sub @100 Rechteck 'Procedure within the
'controller
'Accept parameters

 Dim sx,sy
 sx = Get (0)
 sy = Get (1)
 Lin _x += sx
 Lin _y += sy
 Lin _X += -sx
 Lin _Y += -sy
end sub

 MB_SET (0,100)
MB_SET (1,200)
MB_CALL (100)

'DLL command sequence for
'transferring parameter(s)
'and calling up the sub-
'routine

Data exchange A set of parameter registers within the system parameters is provided for

external communication with internally-active MotionBasic programs.
As is the case with other system parameters, the parameter registers can
be programmed (write and read) internally within a program, as well as
externally online. An external data exchange is therefore very simple to
perform. With these parameter registers, parameters can also be trans-
ferred to internal procedures before these are called up.

 User Manual

591.11-10.7 - 21 -

4 The DLL reference

 For better clarity, the reference is divided into functions which are used
internally in the DLL ("ML_") from those which affect the controller
("MB_") i.e. put functions of the programming language MotionBasic
into effect. This latter group consists of the online functions of Motion-
Basic. Marks are also made to indicate whether they can be carried out
via the FIFO.
After the grouping by function, the functions are listed in alphabetical
order.

4.1 Overview of all functions

 DLL-internal functions

Initialization ML_TimeOut Set timeouts 38
 ML_FIFOIdle Background routine while waiting for online

FIFO
27

 ML_IniCom Initialize communication (COM, USB) 33
 ML_IniUsb Initialize communication via USB 35
 ML_IniTCP Initialize communication via Ethernet 34
 ML_ComSelect Selection of communication interface 24
 ML_DeIniCom Close all communication interfaces 25
 ML_CsumMode Transfer protocol with/without check sum 25
 ML_DllVersion Return version of Xemo DLL 26
 ML_GetDllVersion Determine version of Xemo DLL 29

Error correction ML_ErrorCallBack Call-Back for general error correction 26
 ML_RunErrCallBack Call-Back for errors in Xemo controller 38
 ML_GetErrCode Query error number 30
 ML_GetErrState Query error state 31
 ML_SetErrState Set error state 38
 ML_LastRunErr Query last Xemo controller runtime error 36
 ML_ComErrText Return error text 24
 ML_GetComErr-

Text
Determine error text 28

Data transfer ML_FIFOFull Check if online FIFO is full 27
 ML_PutChar Send 1 byte via serial interface 36
 ML_PutWord Send 1 word (16 bits) via serial interface 37
 ML_PutLong Send 1 long word (32 bits) via serial interface 37
 ML_GetRcvState Query state of serial interface 32
 ML_GetChar Read 1 byte from serial interface 28
 ML_GetWord Read 1 word (16 bits) from serial interface 33
 ML_GetLong Read 1 long word (32 bits) from serial interface 32

 Xemo DLL

- 22 - 591.11-10.7

 MotionBasic functions

System control MB_SysCtrl Break, halt, reset, restart 56
 MB_GetState Query general state 45
 MB_SetFIFO Set online FIFO 55
 MB_ResErr Clear all errors 53
 MB_Call Call subroutine 43

System parameters MB_Set Set system parameters 55
 MB_Seti Set system parameters 55
 MB_Aset Set axis parameters 42
 MB_Aseti Set axis parameters 42
 MB_IoSet Set I/O parameters 47
 MB_IoSeti Set I/O parameters 48
 MB_Get Read system parameters 45
 MB_Aget Read axis parameters 40
 MB_IoGet Read I/O parameters 47

Individual axis con-
trol

MB_Jog Velocity mode 48
MB_Amove Absolute positioning 40

 MB_Rmove Relative positioning 53
 MB_Home Reference run 46
 MB_Stop Stop 56
 MB_Still Await standstill 56
 MB_Busy Query state of one axis 42

Path control MB_Lin, MB_Lin0 Linear interpolation at rapid traverse velocity 50
 MB_Lin1 Linear interpolation at feed velocity 50
 MB_Circle Circle with radius, start angle and end angle 43
 MB_Arc Circular/helical interpolation w radius & target

position
41

 MB_Arcc Circular/helical interpol. w center point & tar-
get position

41

 MB_Arcw Circular/helical interpolation w center point &
target position

41

Inputs and outputs MB_Out Set outputs 50
 MB_Outi Set outputs 51
 MB_Sout Synchronize outputs 55
 MB_Rout Return output read 53
 MB_In Read input 46
 MB_Waitinp Wait for inputs 57
 MB_Inw Read inputs word by word (16 bit) 46
 MB_Outw Read outputs word by word (16 bit) 51
 MB_Outwi Read outputs word by word (16 bit) 52

 User Manual

591.11-10.7 - 23 -

 MB_Routw Return outputs read word by word (16 bit) 54

CAN-bus MB_SdoRcv Receive SDO 54
 MB_SdoTrm Send SDO 54

Text production MB_Print Print from current cursor position 52
 MB_Printxy Print from position x,y 52
 MB_Cpos Position cursor 44
 MB_Ctype Define cursor 44
 MB_TextAttrib Set text attributes (normal, blinking) 57
 MB_Cls Clear screen 44
 MB_Cleol Clear to end of line 43

Keyboard entry MB_Keystate State of a key 49
 MB_Keypressed State „key pressed“ 49
 MB_Keyread Read key 49
 MB_Keyclear Clear keyboard buffer 48

Terminal MB_Keyled Key LEDs on/off 49

Time functions MB_Delay Delay time 44
 MB_Still Await motor standstill 56
 MB_Waitinp Wait for input 57

 Xemo DLL

- 24 - 591.11-10.7

4.2 DLL internal functions

 This chapter presents and describes those functions which perform tasks
within the DLL. These include the initialization of the serial interface,
the transmission and reception of characters via the serial interface, and
error correction.

ML_ComErrText

Purpose Return error text

C/C++ const char * ML_ComErrText (short ErrCode);
Basic -- not available --

 Elements Description
 ErrCode Error code which was queried with

ML_GetErrCode
 Return value The error text associated with that

error code

Description The error texts which are used by the standard error routines of the DLL

can also be used with this function.

See also ML_GetComErrText, ML_GetErrCode

ML_ComSelect

Purpose Select the communication interfaces

C/C++ void ML_ComSelect (short ComNo);
Basic Sub ML_ComSelect (ByVal ComNo as Integer)

 Elements Description
 ComNo Number of the communication

interface (0,1,2..)

Description If a number of Xemo controllers are connected to a PC, these can be

addressed by initializing a number of communication interfaces. Subse-
quent to that, the interface can be selected with ML_ComSelect via
which communication from that time on is to occur. The number of the
interface chosen in ML_IniUsb must be provided here.

Multithread ML_ComSelect can be used in a multithread application as well. The
DLL assures that communication always takes place via the specific in-
terface which ML_ComSelect has selected with its corresponding
thread.

See also ML_IniCom, ML_IniUsb

 User Manual

591.11-10.7 - 25 -

Example ML_IniUsb (0, ”X170001”) 'Initialize the USB inter-

'face with the serial num-
'ber “X170001“ on channel 0

 ML_IniUsb (1, ”X170009”) 'Initialize an additional
'USB interface on channel 1

 Ml_ComSelect (0) 'Select the USB interface
'on channel 0

 MB_rmove (0,1000)
....

'One or more MotionBasic
'commands for this Xemo
'controller

 Ml_ComSelect (1) 'Select the USB interface
'on channel 1

 MB_rmove (0,1000
...

'One or more MotionBasic
'commands for the second
'Xemo controller

ML_CsumMode

Purpose Transfer protocol with / without check sum

C/C++ void ML_CsumMode (short Mode);
Basic Sub ML_CsumMode (ByVal Mode as Integer)

 Elements Description
 Mode Check-sum mode

Mode = 0 Transfer protocol
without check sum

Mode = 1 Transfer protocol with
check sum

Description Standard data transfer occurs without an additional check-sum proto-

col. With this function, the check-sum protocol can be activated or de-
activated.

See also ML_IniCom

ML_DeIniCom

Purpose Close all communication interfaces

C/C++ void ML_DeIniCom (void);
Basic Sub ML_DeIniCom

Description Before an application is exited, all communication interfaces should be

closed with the routine ML_DeiniCom, so that they are again available
for other applications.

See also ML_IniCom, ML_IniUsb

 Xemo DLL

- 26 - 591.11-10.7

ML_ DllVersion

Purpose Return the Xemo DLL version

C/C++ const char * ML_DllVersion (void)
Basic -- not available –

 Elements Description
 Return value Pointer to a string with the Xemo

DLL version

Description See ML_GetDllVersion

ML_ErrorCallBack

Purpose Call-back for general error correction

C/C++ void ML_ErrorCallBack (short (*ErrorFunc) (short

ErrorCode));
Basic Sub ML_ErrorCallBack (ByVal ErrorFuncType as Long)

 Elements Description
 ErrorFunc Pointer for one’s own error

correction routine
OR
0 = no error correcton routine
1 = standard error correction

routine (default)
 ErrorFuncType 0 = no error correction routine

1 = standard error correction
routine (default)

Description With this routine, you can install an application-specific call-back rou-

tine which will be called up in case of a DLL error.
With ErrorFunc the type of error correction routine can be pro-
grammed. For application-specific error correction routines, a pointer is
transferred to the corresponding error correction routine (call-back), if
the value is 1, the standard error correction routine of the Xemo DLL is
activated, with the value NULL, no error correction routine is active.

Call-back If the call-back process is to be used, the application-specific error cor-

rection routine must have the following form: short MyErrorFunction
(short ErrorCode)

 The current error code is transferred as a parameter to the function.
The new error state must be delivered as the return value. The individ-
ual error codes are further described under ML_GetErrCode. The new
error state can determine if the error is to be cleared of if, for example,

 User Manual

591.11-10.7 - 27 -

the process is to be abandoned. Error state is further described under
ML_GetErrState.

Remark

If an application-specific error correction routine is desired, this func-
tion should be called up prior to initialization of the serial interface so
that possible errors can be dealt with during initialization.

Remark

The call-back process functions only with those programming languages
which support error pointers. In other languages (e.g. Basic), the only
possibility which exists is to work with the standard error-correction
routine.

See also ML_RunErrCallBack, ML_GetErrCode, ML_GetErrState

Example ML_ErrorCallBack (MyErrorFunc);

ML_FIFOFull

Purpose Check if the online FIFO is full

C/C++ short ML_FIFOFull (void);
Basic Function ML_FIFOFull () as Integer

 Elements Description
 Return value State of the online FIFO

Description If the online FIFO is full, this function returns a value unequal to 1

See also MB_GetState

Example
C/C++

 while (ML_FIFOFull() != 0)
 printf ("Xemo-FIFO voll");

ML_FIFOIdle

Purpose Set up a background routine when waiting for the online FIFO

C/C++ void ML_FIFOIdle (void (*FIFOIdle) (void));
Basic - not supported -

 Elements Description
 FIFOIdle Pointer to idle function

Description With the parameter FIFOIdle, a customized routine can be entered

which should always be called up (call-back) when the FIFO is full at
the time a FIFO command is issued and, as a result, there is time for

 Xemo DLL

- 28 - 591.11-10.7

other assignments. Such an application-specific call-back function
could, for example, update the display of the axes’ positions on the
monitor or respond to a user cancellation.

Remark

The call-back process functions only with programming languages
which support function pointers.

See also ML_ErrorCallBack, ML_RunErrCallBack

ML_GetChar

Purpose Read one byte from the serial interface

C/C++ short ML_GetChar (void);
Basic Function ML_GetChar() as Integer

 Elements Description
 Return value The byte read

Description The Xemo DLL uses this function to read all characters from the serial

interface. If no byte is available for reading, a delay takes place until
one becomes available.

Timeout If a timeout was programmed with the routine ML_TimeOut at the time

of initialization, the timeout will not be exceeded while waiting for a
byte. In such a case, the error routine will be called up with the error
code ERR_RCV_TIMEOUT.

See also ML_PutChar, ML_PutWord, ML_PutLong,

ML_GetRcvState, ML_GetWord, ML_GetLong

ML_GetComErrText

Purpose Determine error text

C/C++ void ML_GetComErrText (short ErrCode, char * ErrTxt,

short MaxLen);
Basic Sub ML_GetComErrText (ByVal ErrCode As Integer, _

 ByVal ErrTxt As String, ByVal MaxLen As Integer)

 Elements Description
 ErrCode Error code which was queried with

ML_GetErrCode
 ErrTxt Pointer to a string in which the

error text is to be entered
 MaxLen Maximum length of the error text

 User Manual

591.11-10.7 - 29 -

Description With this function, error texts which used by the DLL’s standard error

routines can also be used for customized applications.

See also ML_ComErrText, ML_GetErrCode

Example
Visual Basic

 'This Visual Basic function provides the error text
'which belongs to the ErrCode

 Public Function MB_ComErrText (ErrCode as Integer) As
String
 Dim ErrText As String * 40
 ML_GetComErrText (ErrCode, ErrText, 40)
 MB_ComErrText = Left(Version, InStr(ErrText,
Chr$(0))-1)
End Function

ML_ GetDllVersion

Purpose Determine the Xemo DLL version

C/C++ void ML_GetDllVersion (char * Version, short MaxLen);
Basic Sub ML_GetDllVersion (ByVal Version As String, ByVal

MaxLen As Integer)

 Elements Description
 Version Pointer to a string in which the

DLL’s version string is to be
entered

 MaxLen Maximum length of the string

Description You can determine the Xemo DLL’s current version with this function. It

is returned as a character string. When the DLL is delivered, its version
is entered in whichever file (XemoDLL.h, xemodll.bas and/or xemoll.vb)
belongs to the particular DLL version.

C/C++ #define XEMO_DLL_VESRION "2.16"
Basic Public Const XEMO_DLL_VESRION = "2.16"

 During initialization of the application, this function can be used to

check if the loaded DLL corresponds to the version with which the ap-
plication was generated.

Remark

To return a pointer to the version string, use the function ML_DllVer-
sion. This possibility is only available in those languages which allow
pointers.

See also ML_DllVersion

 Xemo DLL

- 30 - 591.11-10.7

ML_GetErrCode

Purpose Query error code

C/C++ short ML_GetErrCode (void);
Basic Function ML_GetErrCode () as Integer

 Elements Description
 Return value The most recently registered error

code

Description Each time an error within the Xemo DLL occurs, the corresponding er-

ror code is registered. This error code can be queried with the function
ML_GetErrCode. The error code is, however, not cleared and can be
queried again as often as desired.

Only with setting the state of error with the procedure ML_SetErrState
the error code will be reset to 0. Therefore the new value of the error
state is of no importance, the error code will be deleted.

Remark

You can query the state of an error, and through that the results of user
communication, with the function ML_GetErrState.

 The individual error codes are defined as follows:
ErrorCode 1 ERR_XEMO This error is generated when an

error within the controller is
detected at the time the system
state is being queried. In
certain cases, the error code
within the controller must be
separately queried.

 2 ERR_COM_PORT The serial interface cannot be
initialized.

 3 ERR_RCV_OVERFLOW There is an overflow in the
serial interface’s receive-data
buffer.

 4 ERR_RCV_TIMEOUT The programmed timeout for
receiving a character has
expired.

 5 ERR_FIFO_TIMEOUT The programmed timeout for the
Online FIFO has expired, i.e.,
the maximum time during which
the Online FIFO can still
receive a command.

 6 ERR_GETSTATE An error has occurred during a
system state query. (Getstate)

 7 ERR_RCV_CMD An error has occurred during a
response from the controller.

 User Manual

591.11-10.7 - 31 -

 8 ERR_TRM_TIMEOUT The TIMEOUT expired while a
character was being sent.

 9 ERR_CHECKSUM A check-sum error has occurred
during data transfer.

 10 ERR_COM_SELECT An attempt was made to access
an invalid or non-initialized
communication interface.

 11 ERR_MAX_THREADS A maximum of only five
different threads can access
the DLL.

 12 ERR_GET_THREAD_COM Function used without opening
COM port previously

 13 Firmware file has the wrong
format (only Xemo controllers
with Ethernet)

 14 ERR_COM_CANCELED Communication to the Xemo
canceled. The Online FIFO is no
longer writable or readable.

See also ML_GetErrState, ML_ErrorCallBack

ML_GetErrState

Purpose Query error state

C/C++ short ML_GetErrState (void);
Basic Function ML_GetErrState () as Integer

 Elements Description
 Return value The current error state

Description The error state gives information about the state of error management.

The error state informs whether an error is present, it is being corrected
at this moment, or if it is necessary to cancel. The error state can be
cleared with ML_SetErrState. The error state is also cleared during ini-
tialization with ML_IniCom or ML_IniUsb.

 When the automatic error handling is switched off, the error state will

be automatically set to ERR_RETRY (3) with each new error.

 As long as the error state is not reset with ML_SetErrState, the value of

the error state will not be cleared.

 The error state can be as follows:
Error state ERR_LEFT -1 A controller run-time error has been indi-

cated by the standard error correction
routine but not cleared.

 NO_ERR 0 There are no errors at present.

 Xemo DLL

- 32 - 591.11-10.7

 ERR_XEMO_PENDING 1 An error has occurred in the Xemo con-
troller, but it has not been corrected.

 ERR_COM_PENDING 2 An error has occurred in serial communi-
cation, but it has not been corrected.

 ERR_RETRY 3 Possible return value in an error correc-
tion routine. The error should be cleared
and a new run started.

 ERR_CANCEL 4 Possible return value in an error correc-
tion routine. The error should not be
cleared but cancelled instead. No further
data will be sent to the Xemo controller.

Remark

When applying the standard error-correction routine, (see ML_Error-
CallBack, only the error state codings listed here with the meanings de-
scribed are possible. You are completely free to set up your own error
correction in accordance with the call-back procedure, but you must
provide for the correct error treatment yourself.

See also ML_SetErrState, ML_ErrorCallBack

ML_GetLong

Purpose Read one long-word (32 bits) from the serial interface

C/C++ long ML_GetLong (void);
Basic Function ML_GetLong() as Long

 Elements Description
 Return value The 32-bit long word read

Description With the help of the function ML_Getchar, four bytes are read from the

serial interface and combined to form one long-word.

See also ML_PutChar, ML_PutWord, ML_PutLong,

ML_GetRcvState, ML_Getchar, ML_GetWord

ML_GetRcvState

Purpose Query state of the serial interface

C/C++ short ML_GetRcvState (void);
Basic Function ML_GetRcvState() as Integer

 Elements Description
 Return value State of the serial interface

 User Manual

591.11-10.7 - 33 -

Description This function provides a nonzero value as soon as a character is in the
receiver buffer.

See also ML_PutChar, ML_PutWord, ML_PutLong,

ML_Getchar, ML_GetWord, ML_GetLong

ML_GetWord Read one word (16 bits) from the serial interface

C/C++ short ML_GetWord (void);
Basic Function ML_GetWord() as Integer

 Elements Description
 Return value The 16-bit word read

Description With the help of the function ML_Getchar, two bytes are read from the

serial interface and combined to form one word.

See also ML_PutChar, ML_PutWord, ML_PutLong,

ML_GetRcvState, ML_Getchar, ML_GetLong

ML_IniCom

Purpose Initialize communication (COM, USB)

C/C++ short ML_IniCom (short ComNo, long Baud);
Basic Function ML_IniCom (ByVal ComNo as Integer , ByVal

Baud as Integer) As Integer

 Elements Description
 ComNo Number of the communication interface

(0 = USB, 1 = COM1, 2 = COM2)
 Baud Baud rate, e.g. 9600 for 9.600 bauds
 Return value Error code

Description Prior to calling up a MotionBasic command, the communication inter-

face must be initialized once with ML_IniCom.
One of the RS232 interfaces (COM1, COM2, …) or the USB interface
can be selected. The USB interface is selected with ComNo = 0. In this
case, the value for the baud rate is irrelevant. The first available USB in-
terface to which the Xemo controller is connected is opened. If a num-
ber of Xemo devices are connected via USB, it cannot be clearly pre-
dicted which of the connected devices will be selected. In this case, the
appropriate USB interface should be opened with ML_IniUsb.
If the communication interface or parameters (baud rate) are to be
changed during the application, all communication interfaces must be
closed with ML_DeiniCom prior to a renewed call-up of ML_IniCom.

 Xemo DLL

- 34 - 591.11-10.7

The interface should also be closed with ML_DeiniCom prior to ending
the application, so that they are again available for other applications.
In case an error occurs during the initialization, the error routine is
called up with the error code ERR_COM_PORT. Further, the error code
will be returned in the return value.

Remark

Any previous error state still present will be cleared with ML_IniCom.

See also ML_IniUsb, ML_DeIniCom, ML_ComSelect

Example 'The serial interface COM1 will be opened with 9,600

'baud.
 ML_IniCom (COM1, 9600)

 'The first available USB interface to which a Xemo

'controller is connected will be opened.
 ML_IniCom (0,0)

ML_IniTCP

Purpose Initialize communication via Ethernet

C/C++ short ML_IniTCP (const char * IpAddr, long port);
Basic Function ML_IniTCP (ByVal port as Integer , ByVal

IpAddr As String) As Integer

 Elemente Beschreibung
 IpAddr String that contains an IP address,

either in point notation
"192.168.1.204" Or an alias like
„www.systec.de/XemoCtrl“

 port TCP port address, must be set for
Xemo on 502.

 Return value Error code

Description As an alternative to the traditional functions ML_IniCom and ML_Ini-

Usb, an Ethernet interface associated with the IP address to communi-
cate with the Xemo control can be opened with the function ML_In-
iTCP. If no Xemo controller with the specified IP address is attached,
the error routine will be called up with the error code
ERR_COM_PORT and the error code will be returned as the return
value.

 With the port parameter, you specify the TCP port address. Only the
value of 502 is allowed.

http://www.systec.de/XemoCtrl

 User Manual

591.11-10.7 - 35 -

Remark

If you want to operate several Xemo controls over Ethernet via one
Ethernet interface, they must have different IP addresses. Delivered all
Xemo controls have the same IP address. You can change the IP address
in case of need via the program XemoUpdate.exe. More information is
described in the instruction manual of the MotionBasic IDE [SYS-
TEC875].

 Tip
Any previous error state still present will be cleared with ML_IniTCP.

See also ML_IniCom, ML_DeIniCom, ML_ComSelect, ML_IniUsb

Example 'The Ethernet interface of the Xemo controller with IP

'address "192.168.1.204" is opened.
 IniTCP („192.168.1.204“,502)

ML_IniUsb

Purpose Initialize communications via USB

C/C++ short ML_IniUsb (short ComNo, const char * SerialNo);
Basic Function ML_IniUsb (ByVal ComNo as Integer , ByVal

SerialNo As String) As Integer

 Elements Description
 ComNo Any number (between 0 and 9) for

the later selection of the
communication interface.

 SerialNo Text string with the USB series
number of the connected Xemo
controller.

 Return value Error code

Description As an alternative to the standard function ML_IniCom, the function

ML_IniUsb can be used in combination with a USB interface’s device
series number to initialize that device for communication with the
Xemo controller. If no Xemo controller is connected to that series num-
ber, the error routine will be called up with the error code
ERR_COM_PORT and the error code will be returned as the return
value.
With the parameter ComNo, an arbitrary number between 0 and 9 will
be provided for the later selection of a specific communication inter-
face. This is necessary when a number of Xemo controllers are to be ad-
dressed via a number of interfaces. See also ML_ComSelect.

 Xemo DLL

- 36 - 591.11-10.7

Xemo USB driver In order to open a USB interface, you must first install the Xemo USB
driver. The Xemo USB driver installation is done automatically with the
installation of the MotionBasic IDE.

 Tip

Since each Xemo has its own serial number, several Xemo controllers
can be operated together via USB through one USB interface.
You can find the serial number of controlling Xemo on the label; for
Xemo controllers with Ethernet port you can read the serial number also
via MB_Get command (parameter 1003 _SerialNo).

 Tip
Any previous error state still present will be cleared with ML_IniUsb.

See also ML_IniCom, ML_DeIniCom, ML_ComSelect

Example 'The USB interface with the series number „12345678“

'connected to a Xemo controller will be initialized.
 ML_IniUsb (0, ”12345678”)

ML_LastRunErr

Purpose Query the last Xemo controller runtime error

C/C++ short ML_LastRunErr (void);
Basic Function ML_LastRunErr () as Integer

 Elements Description
 Return value The most recent Xemo controller

runtime error code entered by the
standard error routine.

Description For every FIFO command and in each case of a MB_GetState call-up to

query the Xemo controller system state, the DLL also queries the error
bit and, in case of an error, calls up the error correction. If the standard
error correction for runtime errors (see also ML_RunErrCallBack) is ac-
tive, the error is read out of the controller by means of MB_Get
(_ErrNo) and displayed in a notification window.

 The error which is read out of the controller is stored and can be read
out by ML_LastRunErr at any time.

See also ML_RunErrCallBack, ML_ErrorCallBack, ML_GetErrCode, ML_GetErr-

State

ML_PutChar

Purpose Send one byte via the serial interface

 User Manual

591.11-10.7 - 37 -

C/C++ void ML_Putchar (short Chr);
Basic Sub ML_Putchar (ByVal Chr as Integer)

 Elements Description
 Chr The byte to be sent

Description The Xemo DLL uses this function to transfer one byte via the serial in-

terface.

See also ML_PutChar, ML_PutWord, ML_PutLong,

ML_GetRcvState, ML_Getchar, ML_GetWord, ML_GetLong

ML_PutLong

Purpose Send one long-word (32 bits) via the serial interface.

C/C++ void ML_PutLong (long Lword);
Basic Sub ML_PutLong (ByVal Lword as long)

 Elements Description
 Lword The 32-bit long word to be sent

Description A long-word parameter is divided into four bytes and sent in the right

sequence sent by ML_PutChar via the serial interface.

See also ML_PutChar, ML_PutWord,

ML_GetRcvState, ML_Getchar, ML_GetWord, ML_GetLong

ML_PutWord

Purpose Send one word (16 bits) via the serial interface

C/C++ void ML_PutWord (short Word);
Basic Sub ML_PutWord (ByVal Word as Integer)

 Elements Description
 Word The 16-bit word to be sent

Description A word parameter is divided into two bytes and sent in the proper se-

quence by ML_PutChar via the serial interface.

See also ML_PutChar, ML_PutLong,

ML_GetRcvState, ML_Getchar, ML_GetWord, ML_GetLong

 Xemo DLL

- 38 - 591.11-10.7

ML_RunErrCallBack

Purpose Call-back for correction of Xemo controller errors

C/C++ void ML_RunErrCallBack (short (*ErrorFunc) (void));
Basic Sub ML_RunErrCallBack (ByVal ErrorFuncType as Long)

 Elements Description
 ErrorFunc Pointer for one’s own error correction routine

OR
0 = no error correction routine
1 = standard error correction

routine (default)
 ErrorFuncType 0 = no error correction routine

1 = standard error correction
routine (default)

Description Whenever the function MB_GetState is called up to query the system

state of the Xemo controller, the error bit is also queried by the DLL
and, in case of an error, the error correction is called up.

 For correcting errors which occur in the Xemo controller, a separate er-
ror correction routine can be installed. You can find additional informa-
tion on this under ML_ErrorCallBack.

See also ML_ErrorCallBack, ML_GetErrCode, ML_GetErrState

ML_SetErrState

Purpose Clear or re-set the error state

C/C++ void ML_SetErrState (short State);
Basic Sub ML_SetErrState (ByVal State as Integer)

 Elements Description
 State The new error state

Description With this function, the error state can be re-set. Appropriate values fort

he new state are:
 NO_ERR Clear the error
 ERR_CANCEL Do not clear the error. Communication with the

controller will be cancelled.
See also ML_GetErrState

ML_TimeOut

Purpose (Re-)Set timeouts new

 User Manual

591.11-10.7 - 39 -

C/C++ void ML_TimeOut (double ComTimeout, double

FIFOTimeout);
Basic Sub ML_TimeOut (ByVal ComTimeout as Double, ByVal

FIFOTimeout as Double)

 Elements Description
 ComTimeout Timeout for receiving and sending

characters
 FIFOTimeout Timeout for the online FIFO

Description Timeout times (in seconds) are (re-) programmed
 ComTimeout sets the maximum time in seconds for receiving and trans-

mitting a character. If the time is exceeded, the error routine is called
up with the error code ERR_RCV_TIMEOUT or ERR_TRM_TIMEOUT.

 FIFOTimeout provides the maximum time in seconds at the end of

which the Online FIFO can again receive a command. If this time is ex-
ceeded, the error routine is called up with the error code
ERR_FIFO_TIMEOUT.

 If no timeout is desired, the corresponding parameter should be set at 0

Default ComTimeout is preset at 1 second. The FIFOTimeout is set at null, i.e.

no FIFO timeout is active.

Remark

It is normally not necessary to program timeouts; they are only neces-
sary when particular situations are to be dealt with.

See also ML_FIFOIdle, ML_ErrorCallBack

Example ML_TimeOut (1, 5);

 Xemo DLL

- 40 - 591.11-10.7

4.3 The Xemo DLL functions

 This chapter described those functions which correspond to a Motion-
Basic command of the Systec controller. Among those are the com-
mands for moving motors, for setting and reading inputs and outputs,
for programming and return of system parameters as well as the termi-
nal functions and communication via the CAN interfaces.
The DLL function creates the correct transmission format and attends to
the transfer of data to the controller. Functions expecting a return value
wait for the answer from the controller.
It is noted in each command whether it is carried out via the FIFO (see
also online FIFO).

Remark

Except for the function MB_GetState, only the format of the DLL func-
tions is described. The extensive description of all MotionBasic com-
mands can be found in the reference section of the MotionBasic pro-
gramming manual [SYSTEC717].

MB_AGet

Purpose Read an axis parameter

C/C++ long MB_AGet (short Axis, short Parameter);
Basic Function MB_AGet (ByVal Axis as Integer, ByVal

Parameter as Integer) as Long

 Elements Description
 Axis Number of the specific axis
 Parameter Number of the axis parameter
 Return value Value of the axis parameter

 FIFO

MB_Amove

Purpose Absolute positioning of axis

C/C++ void MB_Amove (short axis, long target position);
Basic Sub MB_Amove (ByVal axis as Integer, ByVal target

position as Long)

 Elements Description
 Axis Number of the specific axis
 Target position Position to which the axis should run

 FIFO X

 User Manual

591.11-10.7 - 41 -

MB_Arc

Purpose Circular interpolation with radius and target position

C/C++ void MB_Arc (unsigned C_Mask, long Radius, long

Coordinate[]);
Basic Sub MB_Arc (ByVal C_Mask as Integer, ByVal Radius as

Long, ByRef Coordinate() as Long)

 Elements Description
 C_Mask Bit mask of the relevant coordinates

Bit mask of the relevant coordinates
 Radius Radius of the arc

 Coordinate Pointer to the array of the target
coordinates

 FIFO X

MB_Arcc

Purpose Circular interpolation with center point and target position counter-

clockwise

C/C++ void MB_Arcc (unsigned C_Mask, long Mx, long My, long

Coordinate[]);
Basic Sub MB_Arcc (ByVal C_Mask as Integer, ByVal Mx as

Long, ByVal My as Long, ByRef Coordinate() as Long)

 Elements Description
 C_Mask Bit mask of the relevant

coordinates
 Mx X-Coordinate of the center point

 My Y-Coordinate of the center point

 Coordinate Pointer to the array of the target
coordinates

 FIFO X

MB_Arcw

Purpose Circular interpolation with center point and target position clockwise.

C/C++ void MB_Arcw (unsigned C_Mask, long Mx, long My, long

Coordinate[]);
Basic Sub MB_Arcw(ByVal C_Mask as Integer, ByVal Mx as Long,

ByVal My as Long, ByRef Coordinate() as Long)

 Xemo DLL

- 42 - 591.11-10.7

 Elements Description
 C_Mask Bit mask of the relevant

coordinates
 Mx X-Coordinate of the center point

 My Y-Coordinate of the center point

 Coordinate Pointer to the array of the target
coordinates

 FIFO X

MB_Aset

Purpose Set (program) an axis parameter

C/C++ void MB_ASet (short axis, short parameter, long

value);
Basic Sub MB_ASet (ByVal axis as Integer, ByVa parameter as

Integer, ByVal value as Long)

 Elements Description
 Axis Number of the specific axis
 Parameter Number of the parameter
 Value Value of the parameter

 FIFO X

MB_Aseti

Purpose Set (program) an axis parameter

C/C++ void MB_ASet (short axis, short parameter, long

value);
Basic Sub MB_ASet (ByVal axis as Integer, ByVa parameter as

Integer, ByVal value as Long)

 Elements Description
 Axis Number of the specific axis
 Parameter Number of the parameter
 Value Value of the parameter

 FIFO

MB_Busy

Purpose Query state of an axis

 User Manual

591.11-10.7 - 43 -

C/C++ short MB_Busy (short Axis);
Basic Function MB_Busy (ByVal Axis as Integer) as Integer

 Elements Description
 Axis Number of the specific axis

 Return value State of the specific axis

 FIFO

MB_Call

Purpose Call up a subroutine

C/C++ void MB_Call (unsigned ProgNr);
Basic Sub MB_Call (ByVal ProgNr as Integer);

 Elements Description
 ProgNr Number of the subroutine

 FIFO X

Remark

Only procedures which have been declared with additional program
numbers can also be called up online with their numbers. Parameters
can be transferred via the global parameter register.

MB_Circle

Purpose Arc with radius, start angle and end angle

C/C++ void MB_Circle (long Radius, long start angle, long

end angle);
Basic Sub MB_Circle (ByVal Radius as Long, ByVal start angle

as Long, ByVal end angle as Long)

 Elements Description
 Radius Radius of the arc
 Start angle Start angle in 1/100 degrees
 End angle End angle in 1/100 degrees

 FIFO X

MB_Cleol

Purpose Clear to the end of the line

C/C++ void MB_Cleol (void);

 Xemo DLL

- 44 - 591.11-10.7

Basic Sub MB_Cleol

 FIFO

MB_Cls

Purpose Clear the monitor screen

C/C++ void MB_Cls (void);
Basic Sub MB_Cls

 FIFO

MB_Cpos

Purpose Position the cursor

C/C++ void MB_Cpos (short x, short y);
Basic Sub MB_Cpos (ByVal x as Integer, ByVal y as Integer)

 Elements Description
 x Column position of the cursor

 y Line position of the cursor

 FIFO

MB_Ctype

Purpose Define the kind of cursor

C/C++ void MB_Ctype (short TypeNr);
Basic Sub MB_Ctype(ByVal TypeNr as Integer)

 Elements Description
 TypeNr Kind of cursor

 FIFO

MB_Delay

Purpose Delay time

C/C++ void MB_Delay (long delay);
Basic Sub MB_Delay (ByVal delay as Long)

 User Manual

591.11-10.7 - 45 -

 Elements Description
 Delay Delay time in milliseconds

 FIFO X

MB_Get

Purpose Read a system parameter

C/C++ long MB_Get (short Parameter);
Basic Function MB_Get (ByVal Parameter as Integer) as Long

 Elements Description
 Parameter Number of the parameter

 Return value Value of the parameter

 FIFO

MB_GetState

Purpose Query the Xemo state

C/C++ short MB_GetState (void);
Basic Function MB_ GetState () as Integer

 Elements Description
 Return value System state

 FIFO

Description The function MB_GetState reads the system parameter _state from the

controller. The system parameter contains the most important general
state information of the controller. It gives information about the state
of the online FIFO, error state, and the state of the axes. Because the
system state is important for communication with the controller, this
parameter has its own query function to provide a higher level of effi-
ciency.

 Before FIFO commands are transferred, the DLL automatically queries
the controller’s state with the command MB_GetState. If the FIFO is
full, the transfer will be delayed until space has become free again in
the FIFO. At the same time, the error bit in the state is evaluated and
error correction is carried out. (See the chapter Error Correction in this
documentation.)

 An exact description of the command GetState and the system parame-
ter _State is to be found in the reference section of the MotionBasic
programming manual [SYSTEC717].

 Xemo DLL

- 46 - 591.11-10.7

Remark

By regularly calling up the function MB_GetState, you can implement
an effective automatic error correction, as MB_GetState always concur-
rently queries the error bit and then calls up the error routine with the
error code ERR_XEMO.

See also ML_FIFOFull

MB_Home

Purpose Reference axis

C/C++ void MB_Home (short Axis);
Basic Sub MB_Home (ByVal Axis as Integer)

 Elements Description
 Axis Number of the specific axis

 FIFO X

MB_In

Purpose Read inputs

C/C++ short MB_In (short Byteno, short Bitno1, short

Bitno2);
Basic Function MB_In (ByVal ByteNo as Integer, ByVal BitNo1

as Integer, ByVal BitNo2 as Integer) as Integer

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
adddress

 BitNo2 2. Bit number within the byte
address

 Return value State of the input and/or inputs

 FIFO

MB_Inw

Purpose Read input word by word (16 bits)

C/C++ short MB_Inw (short ByteNo);
Basic Function MB_Inw (ByVal Byteor as Integer) as Integer

 User Manual

591.11-10.7 - 47 -

 Elements Description
 ByteNo The byte address

 Return value State of the input(s)

 FIFO

MB_IoGet

Purpose Read an I/O parameter

C/C++ short MB_IoGet (short ByteNo, short BitNo1, short

BitNo2, short Parameter);
Basic Function MB_IoGet (ByVal ByteNo as Integer, ByVal

BitNo1 as Integer, ByVal BitNo2 as Integer, ByVal
Parameter as Integer) As Integer

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Parameter Number of the I/O parameter

 Return value Value of the I/O parameter

 FIFO

MB_IoSet

Purpose Set (program) an I/O parameter

C/C++ void MB_IoSet (short ByteNo, short BitNo1, short

BitNo2, short Parameter, short Value);
Basic Sub MB_IoSet (ByVal ByteNo as Integer, ByVal BitNo1 as

Integer, ByVal BitNo2 as Integer, ByVal Parameter as
Integer, ByVal Value as Long)

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Parameter Number of the I/O parameter

 Value New value of the I/O parameter

 Xemo DLL

- 48 - 591.11-10.7

 FIFO X

MB_IoSeti

Purpose Set (program) an I/O parameter

C/C++ void MB_IoSet (short ByteNo, short BitNo1, short

BitNo2, short Parameter, short Value);
Basic Sub MB_IoSet (ByVal ByteNo as Integer, ByVal BitNo1 as

Integer, ByVal BitNo2 as Integer, ByVal Parameter as
Integer, ByVal Value as Long)

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Parameter Number of the I/O parameter

 Value New value of the I/O parameter

 FIFO

MB_Jog

Purpose Run axis in velocity mode (continuous run)

C/C++ void MB_Jog (short Axis, long velocity);
Basic Sub MB_Jog (ByVal Axis as Integer, ByVal velocity as

Long)

 Elements Description
 Axis Number of the specific axis

 Velocity New run velocity

 FIFO X

MB_KeyClear

Purpose Erase keyboard buffer

C/C++ void MB_KeyClear (void);
Basic Sub MB_KeyClear ()

 FIFO

 User Manual

591.11-10.7 - 49 -

MB_KeyLed

Purpose Turn key LEDs on/off

C/C++ void MB_KeyLed (short Key, short Onoff);
Basic Sub MB_KeyLed (ByVal Key as Integer, Onoff as Integer)

 Elements Description
 Key Key code of the key LEDs

 Onoff New state of the key LEDs

 FIFO

MB_KeyPressed

Purpose Check if key is pressed

C/C++ short MB_KeyPressed (void);
Basic Function MB_KeyPressed () as Integer

 Elements Description
 Return value Nonzero if a key has been pressed

 FIFO

MB_KeyRead

Purpose Read key

C/C++ short MB_KeyRead (void);
Basic Function MB_KeyRead () as Integer

 Elements Description
 Return value Value of the key read

 FIFO

MB_KeyState

Purpose Query key state

C/C++ short MB_KeyState (void);
Basic Function MB_KeyState () as Integer

 Xemo DLL

- 50 - 591.11-10.7

 Elements Description
 Return value State of the key

 FIFO

MB_Lin, MB_Lin0

Purpose Linear interpolation at rapid traverse velocity

C/C++ void MB_Lin (unsigned C_Mask, long Coordinate[]);

void MB_Lin0 (unsigned C_Mask, long Coordinate[]);
Basic Sub MB_Lin (ByVal C_Mask as Integer, ByRef

Coordinate() as Long)
Sub MB_Lin0 (ByVal C_Mask as Integer, ByRef
Coordinate() as Long)

 Elements Description
 C_Mask Bit mask of the relevant

coordinates
 Coordinate Pointer to the array of the target

coordinates

 FIFO X

MB_Lin1

Purpose Linear interpolation at feed velocity

C/C++ void MB_Lin1 (unsigned C_Mask, long Coordinate[]);
Basic Sub MB_Lin1 (ByVal C_Mask as Integer, ByRef

Coordinate() as Long)

 Elements Description
 C_Mask Bit mask of the relevant

coordinates
 Coordinate Pointer to the array of the target

corrdinates

 FIFO X

MB_Out

Purpose Set outputs

C/C++ void MB_Out (short ByteNo, short BitNo1, short BitNo2,

short Value);

 User Manual

591.11-10.7 - 51 -

Basic Sub MB_Out (ByVal ByteNo as Integer, ByVal BitNo1 as
Integer, ByVal BitNo2 as Integer, ByVal Value as
Integer)

 Elements Description
 ByteNo The byte address

 BitNo1 1st Bit number within the byte
address

 BitNo2 2nd Bit number within the byte
address

 Value New state of the output(s)

 FIFO X

Remark

Always give the 2nd bit number, even if you only want to set one out-
put.

MB_Outi

Purpose Set outputs

C/C++ void MB_Out (short ByteNo, short BitNo1, short BitNo2,

short Value);
Basic Sub MB_Out (ByVal ByteNo as Integer, ByVal BitNo1 as

Integer, _
 ByVal BitNo2 as Integer, ByVal Value as Integer)

 Elements Description
 ByteNo The byte address

 BitNo1 1st Bit number within the byte
address

 BitNo2 2nd Bit number within the byte
address

 Value New state of the output(s)

 FIFO

Remark

Always give the 2nd bit number, even if you only want to set one out-
put.

MB_Outw

Purpose Set output word by word (16 bit)

C/C++ void MB_Outw (short ByteNo, short Value);

 Xemo DLL

- 52 - 591.11-10.7

Basic Sub MB_Outw (ByVal ByteNo as Integer, ByVal Value as
Integer)

 Elements Description
 ByteNo The byte address

 Value New state of the output(s)

 FIFO X

MB_Outwi

Purpose Set output word by word (16 bit)

C/C++ void MB_Outw (short ByteNo, short Value);
Basic Sub MB_Outw (ByVal ByteNo as Integer, ByVal Value as

Integer)

 Elements Description
 ByteNo The byte address

 Value New state of the output(s)

 FIFO

MB_Print

Purpose Print out text at the current cursor position

C/C++ void MB_Print (char * Text);
Basic Sub MB_Print (ByVal Text as String)

 Elements Description
 Text Text to be printed

 FIFO

MB_Printxy

Purpose Print out text at location x, y

C/C++ void MB_Printxy (short x, short y, char * Text);
Basic Sub MB_Printxy (ByVal x as Integer, ByVal y as

Integer, ByVal Text as String)

 Elements Description
 Text Text to be printed

 x Column location of the text

 User Manual

591.11-10.7 - 53 -

 y Line location of the text

 FIFO

MB_ResErr

Purpose Erase all controller errors

C/C++ void MB_ResErr (void);
Basic Sub MB_ResErr

 FIFO

MB_Rmove

Purpose Relative axis positioning

C/C++ void MB_Rmove (short Axis, long run path);
Basic Sub MB_Rmove (ByVal Axis as Integer, ByVal run path as

Long)

 Elements Description
 Axis Number of the specific axis

 Run path Path along which the axis shall run

 FIFO X

MB_Rout

Purpose Return output(s)

C/C++ void MB_Rout (short ByteNo, short BitNo1, short

BitNo2);
Basic Sub MB_Rout (ByVal ByteNo as Integer, ByVal BitNo1 as

Integer, _
 ByVal BitNo2 as Integer

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Return value State of the output(s)

 FIFO

 Xemo DLL

- 54 - 591.11-10.7

MB_Routw

Purpose Return outputs word by word (16 bit)

C/C++ void MB_Routw (short ByteNo);
Basic Sub MB_Routw (ByVal ByteNo as Integer)

 Elements Description
 ByteNo The byte address

 Return value State of the output(s)

 FIFO

MB_SdoRcv

Purpose Receive SDO (service data object) from CANopen device

C/C++ long MB_SdoRcv (unsigned short NodeId, unsigned short

Index, short SubIndex);
Basic Function MB_SdoRcv (ByVal NodeId as integer, ByVal

Index as integer, ByVal SubIndex as integer) as long

 Elements Description
 NodeId Address of the CANopen device

 Index Index of the SDO object

 SubIndex Subindex of the SDO object

 Return value Value of the SDO-object

 FIFO

MB_SdoTrm

Purpose Send SDO (service data object) to CANopen device

C/C++ void MB_SdoTrm (unsigned short NodeId, unsigned

short Index, short SubIndex, long Value);
Basic Sub MB_SdoTrm (ByVal NodeId as integer, ByVal Index

as integer, ByVal SubIndex as integer, ByVal Value
as long)

 Elements Description
 NodeId Address of the CANopen device

 Index Index of the SDO object

 SubIndex Subindex des SDO object

 Value Value of the SDO object

 FIFO

 User Manual

591.11-10.7 - 55 -

MB_Set

Purpose Set (program) a system parameter

C/C++ void MB_Set (short Parameter, long Value);
Basic Sub MB-Set (ByVal Parameter as integer, ByVal Value as

Long

 Elements Description
 Parameter Number of the parameter

 Value Value of the parameter

 FIFO X

MB_SetFIFO Set the state of the online FIFO

C/C++ void MB_SetFIFO (short State);
Basic Sub MB_SetFIFO (ByVal State as Integer)

 Elements Description
 State New state of the FIFO

 FIFO

MB_Seti

Purpose Set (program) a system parameter

C/C++ void MB_Set (short Parameter, long Value);
Basic Sub MB-Set (ByVal Parameter as integer, ByVal Value as

Long

 Elements Description
 Parameter Number of the parameter
 Value Value of the parameter

 FIFO

MB_Sout

Purpose Setting synchronous outputs

C/C++ void MB_Sout (short ByteNo, short BitNo1, short

BitNo2, short Value);

 Xemo DLL

- 56 - 591.11-10.7

Basic Sub MB_Sout (ByVal ByteNo as Integer, ByVal BitNo1 as
Integer, ByVal BitNo2 as Integer, ByVal Value as
Integer)

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Value New state of the output(s)

 FIFO X

MB_Still

Purpose Await standstill of one or all axes

C/C++ void MB_Still (short Axis);
Basic Sub MB_Still (ByVal Axis as Integer)

 Elements Description
 Axis Number of the specific axis. “xall“

(= -1) for all axes is possible
(see MotionBasic manual)

 FIFO X

MB_Stop

Purpose Stop an axis

C/C++ void MB_Stop (short Axis);
Basic Sub MB_Stop (ByVal Axis as Integer)

 Elements Description
 Axis Number of the specific axis

 FIFO

MB_SysCtrl Break, halt, reset, restart

C/C++ void MB_SysCtrl (short Control);
Basic Sub MB_ SysCtrl (ByVal Control as Integer)

 FIFO

 User Manual

591.11-10.7 - 57 -

MB_TextAttrib

Purpose Set a text attribute

C/C++ void MB_TextAttrib (short Attrib);
Basic Sub MB_TextAttrib (ByVal Attrib as Integer)

 Elements Description
 Attrib Text attribute

 FIFO

MB_Waitinp

Purpose Wait for state at input

C/C++ void MB_Waitinp (short ByteNo, short BitNo1, short

BitNo2, short Value);
Basic Sub MB_Waitinp (ByVal ByteNo as Integer, ByVal BitNo1

as Integer, ByVal BitNo2 as Integer, ByVal Value as
Integer)

 Elements Description
 ByteNo The byte address

 BitNo1 1. Bit number within the byte
address

 BitNo2 2. Bit number within the byte
address

 Value State of the input(s) being waited
for

 FIFO X

 Xemo DLL

- 58 - 591.11-10.7

5 Application examples

5.1 Visual Basic sample application

5.1.1 Description

 A simple dialog application has been provided in the Visual Basic pro-
ject VBDemo.vbp, with which you can operate up to four Xemo con-
troller axes. The specific axis can be selected with the scroll bar. The
axis thus selected is then steered in relative, absolute or jogging opera-
tion with the corresponding buttons. The run-path and/or the velocity
can be entered in the input box next to the buttons. Clicking on the
stop button halts all axes. At the right side, the positions of all the axes
are displayed.

5.1.2 Project modules

 The project consists of the following modules:
 DemoForm.frm Visual Basic Form for the application dialog
 Formser.frm Visual Basic Form for the interface dialog
 VBdemo.bas Initialization procedures
 XemoDLL.bas Declaration of the MotionBasic functions
 Mbconst.bas useful MotionBasic constants

5.1.3 Program start

 After you start the application in the event procedure Form_Load, the
initialization of the Xemo DLL with the function procedure Ini_Xemo is
the next step. In case the initialization fails or is aborted by the user, the
application itself is aborted.

 User Manual

591.11-10.7 - 59 -

Form_Load Proce-
dure
(DemoForm.frm)

 Dim ExitEvent As Boolean
Private Sub Form_Load()

 BAUDRATE = GetSetting("XemoDemo", "Comport",_
 "Baudrate", 19200)
 COMNR = GetSetting("XemoDemo", "Comport",_
 "ComNr", 1)
 Caption = "VB XemoDLL Demo" + _
 "(COM " + Str(COMNR) + _
 ", Baud " + Str(BAUDRATE) + ")"

 If Ini_Xemo = False Then
 Unload Me
 Exit Sub
 End If

 ExitEvent = False
 Timer_Refresh.Interval = 100
 Timer_Refresh.Enabled = True

End Sub

5.1.4 Initializing

 The initializing of the Xemo DLL is somewhat more complex here so
that, in case of an error such as a false configuration of the serial inter-
face or if the controller is not connected, the user can either re-config-
ure the interface or abort. Until one or the other has occurred, the ini-
tialization procedure remains active.

 After initialization of the serial interface (ML_IniCom), the state of the
Xemo controller is queried first (MB_Getstate). This query shall verify er-
ror-free communication. At the same time, any possible errors in the
controller are intercepted. Further action depends on the error state,
which is read out with ML_GetErrState. If no error is present, the proce-
dure is ended with “True”. If the user wishes to abort, the process can
be exited immediately with “False”. Otherwise, he has the possibility to
re-configure the serial interface.

Ini_Xemo Proce-
dure
(VBdemo.bas)

 Function Ini_Xemo() As Boolean

 ML_IniCom COMNR, BAUDRATE

 Do
 MB_GetState

 Dim ErrState As Integer
 ErrState = ML_GetErrState()

 Select Case ErrState
 Case NO_ERR
 Ini_Xemo = True
 Exit Do

 Xemo DLL

- 60 - 591.11-10.7

 Case ERR_CANCEL

 Ini_Xemo = False
 Exit Function

 Case Else

 If MsgBox("re-configure serial interface?",
vbOKCancel _
 + vbQuestion, "XemoDLL Demo") = vbOK Then

 FormInterface.Show vbModal
 Else
 Ini_Xemo = False
 Exit Function
 End If
 End Select
 Loop

End Function

5.1.5 Ending the application

 Before the application is ended, the interface must always be closed
with the routine ML_DeiniCom, so that it is available for other applica-
tions again.

Form_Unload Pro-
cedure
(DemoForm.frm)

 Private Sub Form_Unload(Cancel As Integer)

 Timer_Refresh.Enabled = False

 SaveSetting "XemoDemo", "Comport", "Baudrate", _
BAUDRATE
 SaveSetting "XemoDemo", "Comport", "ComNr", COMNR

 ML_DeIniCom
 ExitEvent = True

End Sub

5.1.6 Running the axes

 For each of the four buttons for steering the axes, there is an event pro-
cedure. The procedure for the absolute positioning of an axis looks like
this.

Amove Procedure
(DemoForm.frm)

 Private Sub Amove_Click()
Dim Axis
Dim Pos

 User Manual

591.11-10.7 - 61 -

 Axis = Val(AxisParameter.Text)
 Pos = Val(AmoveParameter.Text)
 MB_Amove Axis, Pos

End Sub

5.1.7 Displaying the positions

 So that the current positions of the axes are continuously displayed, a
timer is started after initialization (see Timer_Ini procedure) which takes
control of the read-out and display of these positions. You should, how-
ever, not forget that reading out the positions (MB_AGet) takes a certain
amount of time (about 5 ms at 19200) because of the serial interfaces’
transmission time. Consequently, good programming will permit other
intermediate events by calling up the “DoEvents” procedure. In the
worst case (if the timer frequency is set very high and/or the number of
queries is quite large), operation of the application could seem very
slow and delayed. In this application, the timer is set at 50 ms. How-
ever, you should always keep in mind that, when the “DoEvents” pro-
cedure is called up, all kinds of possible events can occur, including the
“Unload” event. With the global variable “ExitEvent”, this event can be
intercepted and the timer procedure immediately exited.

Timer_Refresh Pro-
cedure
(DemoForm.frm)

 Private Sub Timer_Refresh_Timer()

 If ML_GetErrState() = ERR_CANCEL Then
 Unload Me
 Exit Sub
 End If

Dim x As Integer
For x = 0 To 3
 DoEvents
 If ExitEvent Then Exit Sub
 Position(x).Caption = MB_AGet(x, m_RPos)
Next x

End Sub

5.1.8 Aborting in case of error

 The Xemo DLL includes a standard routine for error correction. The
standard error correction is pre-set and does not need to be initialized
explicitly. An application which integrates the Xemo DLL need do noth-
ing else but query the error state with ML_GetErrState at certain inter-
vals. If this has received the value (ERR_CANCEL), some kind of error
has occurred and the user should abort.

 The timer-refresh procedure takes over querying the error state. If
ERR_CANCEL is returned in the error state, the application is ended
with “Unload”.

 Xemo DLL

- 62 - 591.11-10.7

5.2 Application example in ANSI –C

5.2.1 Description

Introduction The file dllappl.c contains a small Windows console application which
demonstrates the integration and use of the Xemo DLL in a C- program.
In addition, the use of the call-back function for application-specific er-
ror correction is made clear.

Function The application constitutes a small interpreter for MotionBasic com-
mands. The commands are entered by line via the keyboard or read in
from a file. After interpretation with the help of the Xemo DLL, the
commands are sent to the Xemo controller where they are then exe-
cuted. Errors occurring within either the DLL or the controller are inter-
cepted and displayed.

 If when calling up a program a file name is given as a parameter, that
file will be read in; otherwise commands are read in through the key-
board.

Commands A line-interpreter command begins with a letter followed by one or
more numerical parameters which must be separated by a space.

 The following commands are provided.
 'a': Absolute positioning of an axis

'r': Relative positioning of an axis
'v': Set positioning velocity of an axis
‘j’ Run an axis in the velocity mode
's': Stop an axis
'q': Quit the program

Examples of com-
mands

 a 0 1000 //Axis 0 absolute positioning
 r 1 2000 //Axis 1 relative positioning

 v 1 800 //Feed for axis 1 = 800

 j 4 5000 //Run axis 4 in velocity mode

Compiling The program is written in ANSI C and was compiled as a Windows con-

sole application with the Microsoft Visual C++ 6.0 Compiler
Include At the beginning of the program we find the DLL’s header files, which

must always be included together with the system-defined header files.

 "Xemodll.h" Definition of the DLL functions
 "mbconst.h" Constant definitions
Error correction For testing, the program can be run with an application-specific error

routine as well as with the Xemo DLL’s standard error routine. At the
beginning of the program there is a “#define” allocation for switching
between the two alternatives. It is worth the while to try out both ver-
sions.

 #define APPL_ERROR_FUNC

 User Manual

591.11-10.7 - 63 -

 The application-specific error routine (ErrorFunc) first checks to see if it

is dealing with a serious communication error or rather a runtime error
in the Xemo controller.

Communication er-
ror

In case of a communication error, the error code and the error text will
be displayed on the monitor. The global variable appl_end signifies that
the application should be ended. If the value ERR_CANCEL is returned
to the Xemo DLL, it will prevent any further DLL functions from being
carried out.

 In the main loop, polling appl_end makes certain that the program is
ended.

 while (appl_end == 0)

Runtime error In case of a Xemo controller runtime error, the error code will be pro-

vided. In addition, the user has the possibility of erasing the error with
the keyboard. Dependent on that, either ERR_RETRY or ERR_CANCEL
will be returned.

Initializing In the main routine, the error correction routine will be communicated
to the Xemo DLL after the input stream is opened. Afterwards, the se-
rial interface will be initialized.

 ML_ErrorCallBack (ErrorFunc);
 ML_IniCom (COM_PORT,19200L);

Error query Whenever the various MotionBasic functions are called up within the

„case“ query, the controller’s system state will automatically be queried
so that, at the same time, any error in the controller is identified. If an
error is found, an error function is automatically generated. However,
this always occurs before the actual MotionBasic command is trans-
ferred to the controller. As a result, the state will again be queried after
transfer of the command so that a possible error caused by that com-
mand will be identified. This additional query will, however, only be
made here if the command was entered via the keyboard. Otherwise, it
will be at the end of the program.

5.2.2 Source code listings

5.2.2.1 dllappl.c

 #define APPL_ERROR_FUNC
 /*--

 XEMO DLL Version 2.02

 Copyright © 2000, Systec Elektronik und Software GmbH

 Small MotionBasic Interpreter

 Compiled with Microsoft Visual C++ 6.0

 --*/

 Xemo DLL

- 64 - 591.11-10.7

 #include <windows.h>

 #include <stdio.h>
 #include <conio.h>
 #include <time.h>

 #include "XemoDll.h"
 #include "mbconst.h"

 #define COM_PORT 1 // Number of the serial

//interface

 int appl_end = 0; // Variable for program

//abort

 #ifdef APPL_ERROR_FUNC

 //--

 // Read and evaluate error from the Xemo controller

 //--

 short Xemo_Runtime_Error ()
 {
 long error_code = MB_Get (_ErrNo);
 printf ("\nXemo Runtime Error # %d\n", error_code);

 printf ("Delete error (y/n)? ");
 int key = tolower (getchar());
 printf ("\n");

 if ((key == 'y') || (key == 'y')) {
 MB_ResErr();
 return ERR_RETRY;
 }
 return ERR_CANCEL;
 }

 //--

 // Xemo DLL error correction

 //--

 short ErrorFunc (short ErrCode)
 {
 int errState;

 if (ErrCode == ERR_XEMO) {
 errState = Xemo_Runtime_Error();
 } else {
 printf ("\nCommunicationerror no. %d\n",ErrCode);

 User Manual

591.11-10.7 - 65 -

 printf (ML_ComErrText (ErrCode));
 errState = ERR_CANCEL;
 }

 if (errState == ERR_CANCEL)
 appl_end = 1;
 return (errState);
 }

 #endif // APPL_ERROR_FUNC

 //--

 // Main program, the interpreter

 //--

 void main (int argc, char * argv[])
 {
 int m;
 FILE * cmd_file;
 char inp_line[81];
 char token;
 long p[4];

 printf ("\nMini MotionBasic interpreter");
 printf (" Xemo Dll V. " XEMO_DLL_VERSION "\n");

 cmd_file = stdin; // default keyboard input

 if (argc > 1) {
 if ((cmd_file = fopen (argv[1],"r")) == NULL)
 cmd_file = stdin; // input file

 }

 #ifdef APPL_ERROR_FUNC
 ML_ErrorCallBack (ErrorFunc);
 #endif

 ML_IniCom

(COM_PORT,19200L);
// initialize port

 printf ("Reset Controller ...");
 MB_SysCtrl(_Reset); // reset controller
 printf ("\n\n");

 MB_GetState();
 if (appl_end == 0) {

 Xemo DLL

- 66 - 591.11-10.7

 for (m = 0; m <= 3; ++m)
{

// ramp values

 MB_ASet (m, _Speed, 100000L);
 MB_ASet (m, _Accel, 200000L);
 }

 MB_Printxy (1,1, "DLL-Test");
 }

 while (appl_end == 0) {

 printf ("\r* "); // input prompt

 inp_line[0] = 0;

 if (fgets (inp_line,80,cmd_file) == NULL)
 break;

 if (inp_line[0] == '\n')
 continue;

 if (cmd_file != stdin)
 printf (inp_line);

 // show file input

 token = inp_line[0]; // read command character

 // read parameter

 sscanf (&inp_line[1],"%ld%ld%ld",&p[1],&p[2],&p[3]);

 switch (token) { // evaluate command

 case 'a': // absolut position
 MB_Amove ((int)p[1],p[2]);
 break;

 case 'r': // relative position

 MB_Rmove ((int)p[1],p[2]);
 break;

 case 'v': // position speed

 MB_ASet ((int)p[1], _Speed, p[2]);
 break;

 case 'j': // velocity mode

 MB_Jog ((int)p[1],p[2]);
 break;

 User Manual

591.11-10.7 - 67 -

 case 's':
 MB_Stop ((int)p[1]);
 break;

 case 'l':
 MB_Lin (C_XYZ,p);
 break;

 case 'c':
 MB_Circle (p[1],p[2],p[3]);
 break;

 case 'x':
 MB_Arc (C_XY, p[1],&p[2]);
 break;

 case 'q':
 appl_end = 1; // terminate program

 break;

 default: printf ("unknown command\n");
 }

 if (cmd_file == stdin) // if input from keyboard
 MB_GetState(); // test state for error

 #ifndef APPL_ERROR_FUNC
 if (ML_GetErrState() == ERR_CANCEL)
 break;
 #endif
 }
 MB_Cls();

 MB_GetState(); // test state for error

 ML_DeIniCom (); // deinitialize com port

 printf ("\nProgram ended");
 printf ("\nAny key...");
 _getch();
 }

 Xemo DLL

- 68 - 591.11-10.7

6 Bibliography

[SYSTEC625] Xemo R/S Equipment Manual, Doc-No. 625-11
 © Systec GmbH, Münster, 2019

[SYSTEC717] MotionBasic 6 Programming manual, Doc-No. 717-11
 © Systec GmbH, Münster, 2019

[SYSTEC735] Xemo M Equipment Manual, Doc-No. 735-11
 © Systec GmbH, Münster, 2017

[SYSTEC764] Xemo B-Panelsteuerung Gerätehandbuch, Doc-No. 764-12
 © Systec GmbH, Münster, 2019

[SYSTEC767] LabView-Funktionsbibliothek, Doc-No. 767-22
 © Systec GmbH, Münster, 2016

[SYSTEC772] Technologieoptionen, Doc-No. 772-12
 © Systec GmbH, Münster, 2017

[SYSTEC775] Xemo!Go User Manual, Doc-No. 775-11
 © Systec GmbH, Münster, 2019

[SYSTEC826] Structured troubleshooting, Doc-No. 826-41
 © Systec GmbH, Münster 2019

[SYSTEC836] OT300 Gerätehandbuch, Doc-No. 836-12
 © Systec GmbH, Münster 2019

[SYSTEC858] Xemo-Step Gerätehandbuch, Doc-No. 858-12
 © Systec GmbH, Münster, 2018

[SYSTEC875] MotionBasic 6 IDE User Manual, Doc-No. 875-11
 © Systec GmbH, Münster, 2017

You will find these manuals in your manual folder, on your Systec CD or also downloadable on
www.systec.de/en/downloads/ .

http://www.systec.de/en/downloads/

 User Manual

591.11-10.7 - 69 -

7 Index

.NET ... 6
Array of the target coordinates 12
Call-back .. 14, 17
CAN-bus 10, 13, 23
Check sum ... 18
Check-sum protokoll 19
Circular interpolation 41
Clear screen ... 44
COM .. 18, 33
Communication error 16
Communication interfaces 24, 25
Communication with the controller 13
Control instructions 10
Control of individual axes 10, 12, 13
Controller commands 10
Correction of Xemo controller errors 38
CRC ... 18
Data exchange ... 20
Data protection .. 18
Data transfer ... 21
Define kind of cursor 44
Delay time.. 13, 44
Determine error text 28
Direct commands 13
Direct controller commands 13
Elementary communication functions 19
Erase all controller errors 53
ERR_CANCEL 15, 16, 32
ERR_CHECKSUM 31
ERR_COM_PENDING 15, 32
ERR_COM_PORT 30
ERR_COM_SELECT 31
ERR_FIFO_TIMEOUT 30
ERR_GET_THREAD_COM 31
ERR_GETSTATE .. 30
ERR_LEFT ... 31
ERR_MAX_THREADS 31
ERR_RCV_CMD 30
ERR_RCV_OVERFLOW 30
ERR_RCV_TIMEOUT 30
ERR_RETRY .. 32
ERR_TRM_TIMEOUT 31
ERR_XEMO .. 16, 30
ERR_XEMO_PENDING 15, 32

ErrCode .. 15
Error correction 15, 17, 21
Error deletion.. 17
Error polling .. 18
Error query ... 16
ErrorState .. 31
FIFO ... 12
FIFO controller commands 12
FIFO memory ... 14
FIFO status ... 14
Initialization .. 21
Inputs and outputs 10, 12, 13, 22
Installation .. 6
Keyboard entry ... 23
Local functions ... 9
MB_ ... 8, 21
MB_AGet ... 40
MB_Amove .. 40
MB_Arc .. 41
MB_Arcc .. 41
MB_Arcw ... 41
MB_Aset ... 42
MB_Aseti .. 42
MB_Busy .. 42
MB_Call ... 43
MB_Circle .. 43
MB_Cleol ... 43
MB_Cls ... 44
MB_Cpos .. 44
MB_Ctype .. 44
MB_Delay .. 44
MB_Get .. 45
MB_GetState .. 45
MB_Home .. 46
MB_In .. 46
MB_Inw .. 46
MB_IoGet ... 47
MB_IoSet .. 47
MB_IoSeti ... 48
MB_Jog ... 48
MB_KeyClear.. 48
MB_KeyLed .. 49
MB_KeyPressed .. 49
MB_KeyRead .. 49

 Xemo DLL

- 70 - 591.11-10.7

MB_KeyState .. 49
MB_Lin .. 50
MB_Lin0 .. 50
MB_Lin1 .. 50
MB_Out ... 50
MB_Outi .. 51
MB_Outw .. 51
MB_Outwi ... 52
MB_Print .. 52
MB_Printxy .. 52
MB_ResErr 16, 17, 53
MB_Rmove .. 53
MB_Rout .. 53
MB_Routw ... 54
MB_SdoRcv ... 54
MB_SdoTrm ... 54
MB_Set .. 55
MB_SetFIFO .. 55
MB_Seti ... 55
MB_Sout .. 55
MB_Still ... 56
MB_Stop .. 56
MB_SysCtrl... 56
MB_TextAttrib .. 57
MB_Waitinp... 57
MbConst.bas .. 6
MbConst.vb ... 6
ML_ ... 9, 21
ML_ DllVersion .. 26
ML_ GetDllVersion 29
ML_ComErrText 24
ML_ComSelect ... 24
ML_CsumMode 25
ML_DeiniCom ... 18
ML_DeIniCom ... 25
ML_ErrorCallBack 17, 26
ML_FIFOFull .. 27
ML_FIFOIdle .. 27
ML_GetChar .. 28
ML_GetComErrText 28
ML_GetErrCode 16, 30
ML_GetErrState 15, 31
ML_GetLong .. 32
ML_GetRcvState 32

ML_GetWord ... 33
ML_IniCom .. 18, 33
ML_IniTCP ... 34
ML_IniUsb ... 18, 35
ML_LastRunErr ... 36
ML_PutChar ... 36
ML_PutLong ... 37
ML_PutWord ... 37
ML_RunErrCallBack 38
ML_SetErrState ... 38
ML_TimeOut .. 38
Multicontroller 15, 19
Multithread applications 14
NO_ERR ... 31
Nomenclature .. 8
Online FIFO ... 12
Parameter registers 20
Path control .. 10, 22
Read key .. 49
Receive functions 19
Receive SDO .. 54
Relative axis positioning 53
Return error text 24
Send functions.. 19
Send SDO .. 54
Serial communication 18
Status byte .. 12
Status query ... 12
Strings .. 11
Subprocedures ... 19
Subroutine ... 13
Subroutines .. 10, 19
System control 10, 13, 22
System parameters 10, 12, 13, 22, 45
Terminal ... 10, 23
Text production .. 23
Text string... 11
Thread ... 14
Time functions 10, 11, 13, 23
Trajectory control 12
USB .. 6, 18, 33, 35
version of Xemo DLL 6, 26, 29
Xemo DLL functions 40
xemodll.h ... 6

	Table of contents
	1 Introduction
	1.1 Installation
	1.2 Important symbols in this manual

	2 Syntax
	2.1 A few notes on nomenclature
	2.2 MotionBasic commands
	2.3 Parameters
	2.4 Local functions

	3 Scope of functionality
	3.1 A look at the Xemo commands
	3.2 Time functions
	3.3 Transfer of strings
	3.4 Parameter values for the trajectory commands
	3.4.1 Bit mask of the relevant coordinates
	3.4.2 Array of the target coordinates

	3.5 FIFO and state query
	3.5.1 The online FIFO
	3.5.2 The state query

	3.6 Multithread applications
	3.7 Error correction
	3.7.1 Standard error correction
	3.7.2 Application-specific error correction

	3.8 Serial communication
	3.8.1 Initializing
	3.8.2 Check sum
	3.8.3 Elementary communication functions

	3.9 Subroutines

	4 The DLL reference
	4.1 Overview of all functions
	4.2 DLL internal functions
	4.3 The Xemo DLL functions

	5 Application examples
	5.1 Visual Basic sample application
	5.1.1 Description
	5.1.2 Project modules
	5.1.3 Program start
	5.1.4 Initializing
	5.1.5 Ending the application
	5.1.6 Running the axes
	5.1.7 Displaying the positions
	5.1.8 Aborting in case of error

	5.2 Application example in ANSI –C
	5.2.1 Description
	5.2.2 Source code listings
	5.2.2.1 dllappl.c

	6 Bibliography
	7 Index

